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ABSTRACT
Within the computer vision community, the reconstruction of rigid 3D objects is a well known task in current
research. Many existing algorithms provide a dense 3D reconstruction of a rigid object from sequences of 2D
images. Commonly, an iterative registration approach is applied for these images, relying on pairwise dense
matches between images, which are then triangulated. To minimize redundant and imprecisely reconstructed 3D
points, we present and evaluate a new approach, called Correspondence Chaining, to fuse existing dense two-
view 3D reconstruction algorithms to a multi-view reconstruction, where each 3D point is estimated from multiple
images. This leads to an enhanced precision and reduced redundancy. The algorithm is evaluated with three
different representative datasets. With Correspondence Chaining the mean error of the reconstructed pointclouds
related to ground truth data, acquired with a laser scanner, can be reduced by up to 40%, whereas the root mean
square error is even reduced by up to 56%. The reconstructed 3D models contain much less 3D points, while
keeping details like fine structures, the file size is reduced by up to 78% and the computation time of the involved
parts is decreased by up to 42%.
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1 INTRODUCTION

In this work, we consider 3D reconstruction as the gen-
eration of a digital 3D model of a rigid object from a se-
quence of 2D digital images. This topic, which is focus
of intensive research within the computer vision com-
munity, deals with the estimation of the relative camera
motion and the recovery of the 3D structure of rigid ob-
jects from perspective images. It provides applications
in many areas such as archeology, virtual reality, hu-
man recognition, medical diagnosis, multimedia com-
munication for purposes like documentation, presenta-
tion and representation [Cho02].
The topic is especially interesting, since nowadays dig-

ital cameras are cheap, widely used and contained in
numerous devices such as mobile phones, tablet com-
puters, laptops or even watches. Image-based 3D re-
construction algorithms are able to produce dense and

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

precise 3D models of objects, which can even com-
pete with those produced by laser scanner techniques
[Nöl12]. However, these methods demand a highly
controlled environment for capturing the images, and
are particularly sensitive against difficult lighting con-
ditions. Therefore, in practical daily out-of-lab situa-
tions, the 3D reconstruction technology still faces chal-
lenging problems.
A widely used approach to 3D reconstruction is to re-
cover the 3D structure from pairs of images of the ob-
ject, which is known as the two-view reconstruction
[Har00, Cho02]. In a two-view reconstruction each
3D point is reconstructed based on only two images,
which is the minimum number of images required for

(a) (b) (c)

Figure 1: (a) Reference input image of the civetta
dataset (sculpture of Gino Cortelazzo [Cor]) and 3D re-
construction results without (b) and with (c) the pro-
posed Correspondence Chaining approach.
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Figure 2: Exemplary input images of the three differ-
ent datasets. (a) lion dataset (27 images, 2808×1872
px). (b) civetta dataset (28 images, 2288×1520 px).
(c) temple dataset (47 images, 640×480 px).

a triangulation. Thus, the triangulation is not robust
against imprecise correspondences between pixels. A
small baseline between the images results futhermore in
a narrow triangulation angle for a two-view reconstruc-
tion, which leads to further imprecision of the triangu-
lation. Another problem are redundantly reconstructed
3D points, since identical scene content is reconstructed
multiple times for a series of images. These drawbacks
can be addressed by a multi-view reconstruction, where
each 3D point is triangulated using more than two im-
age points. According to Rumpler at al. [Rum11] a
multi-view reconstruction outperforms a two-view re-
construction in terms of precision and redundancy.
In this paper the new Correspondence Chaining algo-
rithm is proposed, which extends existing dense two-
view 3D reconstruction algorithms (see Figure 1a) to a
multi-view reconstruction (see Figure 1b). The result is
a dense 3D model with enhanced precision and reduced
redundancy. The algorithm is evaluated based on three
representative datasets, which are illustrated by exem-
plary images in Figure 2, in terms of precision, redun-
dancy, runtime and storage consumption.

The remainder of this paper is organized as follows:
Section 2 gives an overview over related work. Sec-
tion 3 explains the proposed Correspondence Chaining
algorithm, which extends existing dense two-view 3D
reconstruction algorithms to a multi-view reconstruc-
tion. Section 4 evaluates our new method and discusses
its results and limitations. The work is concluded in
Section 5.

2 RELATED WORK
Rumpler et al. [Rum11] compared in their work
two-view against multi-view 3D reconstructions in
terms of accuracy and redundancy. According to
their results a multi-view reconstruction outperforms a
two-view reconstruction by at least one order of mag-
nitude. However, many algorithms in the literature are
two-view reconstructions. Thus there is a demand on
extending existing two-view reconstruction algorithms
to multi-view reconstructions.
When assuming calibrated images the reconstruction
quality can also be enhanced with methods like dy-
namic programming or belief propagation [Sun03].

Furthermore, the depth map fusion approach of Merrell
et al. [Mer07] can be applied under this assumption.
However, these methods require calibrated images for
the dense estimation and we do not want to restrict our
method on this assumption.
Moulon at al. [Mou12] presented an algorithm to
fuse spare correspondences in long uncalibrated image
sequences like videos based on the Union-Find algo-
rithm. However, their approach focuses more on low
computational complexity than on accuracy. Further-
more only sparse correspondences were considered.
Koch et al. [Koc98] investigated the field of chaining
dense two-view correspondences. However, they
validate their generated multi-view correspondences
exclusively based on statistics. Furthermore the
validation depends on the position of the point in the
chain. Valid correspondences behind outliers are not
considered any more [Koc98].

3 METHOD
The proposed Correspondence Chaining algorithm ex-
tends existing algorithms for dense two-view recon-
structions on uncalibrated images to allow for multi-
view reconstruction. To perform two-view reconstruc-
tion, any kind of dense correspondence estimation such
as optical flow, block matching or patch match meth-
ods [Har00] is assumed to be provided. Since com-
mon implementations of the listed estimation methods
are applied exclusively in a pairwise manner to two
neighbored images Ii and Ii+1 in an image sequence
S = {Ik|k = 1,2,3, . . . ,n}, multiple partial reconstruc-
tions of the objects are obtained, when reconstructing
rigid objects.

Initial state: In this work, these results of the dense
two-view estimation serve as input for the Correspon-
dence Chaining algorithm, opting for a unification of
those to one common enhanced 3D reconstruction. The
results of the dense estimation are considered to be rep-
resented as disparity matrix Di j between image pairs,
containing for each pixel xi = (ui,vi) of an image Ii an
estimated disparity vector du,v

i to the neighbored image
Ii+1. This disparity vector holds the estimated horizon-
tal and vertical offsets between the pixels xi and xi+1,
whereas xi and xi+1 are supposed to represent identi-
cal content of the captured object within their images
Ii and Ii+1. Commonly, the disparity matrix Di j does
not contain a mapping between all pixels of the images,
since partial occlusions of the scene might occur due
to the shifted point of view between images Ii and Ii+1.
Depending on the chosen object or scene, the dense es-
timation might furthermore fail, when it comes to the
matching of untextured image areas or the formation
of view-point dependent specular reflections. The pro-
cedure of two-view reconstruction is depicted for one
pixel in Figure 3a. Each correspondence xi → xi+1 is
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Figure 3: Two types of reconstruction for four exem-
plary images.

then triangulated to one 3D point. The result is a dense
pointcloud of the captured object.
A major drawback of this pairwise estimation approach
is the poor handling of redundant image content, since
several input images contain in general identic scene
content multiple times. Content of a scene, which is
for example contained in m image pairs, will be recon-
structed m− 1 times, leading to redundant 3D points
in the resulting reconstruction. While this is neither
memory nor runtime efficient, the angle of the trian-
gulation for one correspondence between neighbored
images is generally narrow, leading to unreliable trian-
gulation results [Har00]. Since the pairwise triangu-
lations are based on the minimum number of required
2D points, the 3D points are not robust against outlier.
Considering more than two 2D points for the triangula-
tion process implies therefore more robust results. To
demonstrate this effect, a pointcloud of the lion dataset
using the two view reconstruction scenario is visual-
ized in Figure 7 (a), whereas the civetta dataset can be
seen in Figure 8 (a) and the temple dataset in Figure 9
(a). Wide parts of the models contain imprecisely re-
constructed 3D points, since many points are located in
front or behind the surface of the objects, having obvi-
ously a wrong position.

Correspondence Chaining: Relying on those results,
we propose the Correspondence Chaining algorithm,
which extends a dense two-view reconstruction to a
multi-view reconstruction, to improve the overall re-
construction quality. Within this algorithm the given
dense estimations between image-pairs are chained iter-
atively to obtain chains with maximum possible length.
The iterative procedure of Correspondence Chaining is
depicted in Figure 4. The algorithm requires a reference
Image, initialized with first image and a target image,

Figure 4: Algorithm of Correspondence Chaining.

initialized with second image and works for every pixel
of the reference image.
A check, whether the pixel is already contained in a
Correspondence Chain is performed. If this check fails,
a new Correspondence Chain, initialized with the ac-
tual pixel, is created and the method proceeds with the
new Correspondence Chain. Afterwards the existence
of a correspondence between the actual pixel and the
target image (the next neighboring image), provided by
the dense estimation, is checked. If this is the case,
this correspondence is validated, since the dense cor-
respondence estimation can be imprecise. For the va-
lidity check an extended Round Trip Check (eRTC),
which will be detailed subsequently, is applied. The
correspondence is only added to the Correspondence
Chain C, if it passes the validity check. If the validity
check is not passed or if no correspondence was pro-
vided, the length of the existing Correspondence Chain
is checked: It is rejected, if it has less than two chain
links, because two is the minimum number of chain
links for a chain. With two or more entries the chain
is marked to be completed. For the next iteration step
the target image is set as reference image and the next
image of the dataset is set as target image.
Iterating over all images of an image sequence S results
commonly in long chains of precise correspondences.
Afterwards each chain can then be triangulated to one
3D point with improved reliability by applying a multi-
view triangulation step, since the generated chains in-
variably passed the mentioned validity check (eRTC)
to eliminate outliers. To further increase the precision
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Figure 5: Extended Round Trip Check (eRTC) for five
exemplary images.

of the method, the Correspondence Chaining algorithm
provides a functionality to filter short chains (e.g. with
only two or three chain links), avoiding them to affect
the resulting 3D pointcloud. Within the current work,
chains of length two were removed to not contribute to
the reconstruction.

Vadility check: As mentioned before the proposed
Correspondence Chaining contains a validity check.
This validity check is needed, since the dense esti-
mation is not necessaritly exact and can be imprecise
at some points. A precise correspondence is in this
work considered to map image content given in im-
age Ii to identical image content given in image Ii+1:

xi
precise−−−−→ xi+1 in pixel precision with xi = (ui,vi) and

xi+1 = (ui+1,vi+1), while for some pixel xi = (ui,vi) an

imprecise correspondence is given as xi
imprecise−−−−−→ x′i+1

with x′i+1 = (ui+1 + ∆ui+1 ,vi+1 + ∆vi+1). With values
∆ui+1 ,∆vi+1 > 0 image content is not matched correctly
anymore, whereas ∆ holds typically small values in
the order of few pixels such as ∆ = [−2,2], whereas
extreme outliers (‖∆‖ � 2) are also possible. In the
two-view triangulation ∆ui+1 and ∆vi+1 lead of course
to imprecise results, but – as ∆ui+1 and ∆vi+1 are small
– their impact is limited. However, in the Correspon-
dence Chaining the deviations ∆ui+1 and ∆vi+1 can lead
to problems. While chaining the correspondences, the
small deviations ∆ui+1 and ∆vi+1 can accumulate. For
example, for a chain with ten chain links and a constant
deviation ∆ = 2, the estimated chain sums up an error
of 20 pixels. To overcome this issue of accumulating
errors, a validity check is applied. This check detects
imprecision in the dense estimation at a given position
by verifying, whether a new chain link together with the
already existing chain is plausible.
For Correspondence Chaining we propose the new ex-
tended Round Trip Check (eRTC) as a validity check.
The eRTC verifies a new chain link cn+1 together with
the already existing chain C = {c1, . . . ,cn} based on a
forward and backward dense estimation, with backward
estimation as estimation from Ii+1 to Ii. The dense es-
timation with Correspondence Chaining can estimate
a correspondence on a set of images for a pixel xn =

Figure 6: Evaluation of the chain length with Corre-
spondence Chaining. The diagram shows the ratio of a
given chain length with respect to the total number of
3D points.

(un,vn) in the last image (i= n) to the pixel x1 =(u1,v1)
in the first image (i = 1). The result is the correspon-
dence xn → x1. In the ideal case (see Figure 5a) this
correspondence can also be estimated in the opposite
direction from the pixel x1 = (u1,v1) in the first im-
age (i = 1) to the pixel xn = (un,vn) in the last image
(i = n). The result is then the correspondence x1↔ xn.
However, in praxis the forward and backward dense es-
timation must not be a bijection (see Figure 5 (b). In
general holds

xn = (u,v)→ x1 =⇒ x1→ x′n = (u+a,v+b), (1)

where a and b are typically small values (e.g. 1 - 2
pixel). While chaining the correspondences, the small
errors a and b accumulate. A disparity d between the
pixel, where the estimation started, and the pixel, where
the estimation in the opposite direction ended, occurs
and this disparity d can be used as a quality measure.
If the maximal disparity d is below a given threshold
(e.g. two pixels), the new chain link passes the validity
check, otherwise not.

4 EVALUATION AND RESULTS
In this Section the Correspondence Chaining algorithm
is evaluated. First is the proposed chaining approach
investigated by inspecting the resulting chain length at
different positions within the 3D model. Furthermore
are the runtime and the storage consumption analysed.
To verify the precision of the reconstructed pointclouds,
a comparison against ground truth data is performed.
Finally, meshes are created from the pointclouds to in-
spect the details in the reconstructed models.
Since the Correspondence Chaining algorithm extends
an existing two-view reconstruction to a multi-view re-
construction, an exemplary two-view reconstruction al-
gorithm is required for the evaluation. In this paper we
used a estimation method provided by Sony.

Correspondence Chaining: Table 1 and Figure 6 show
the number of generated chains for the lion dataset
listed with respect to their length. The longest chains
are based on more than ten images and are located at



lion dataset
Without CC CC + eRTC

# Chains of length 2 15,989,224 (706,364)
# Chains of length 3 0 590,325
# Chains of length 4 0 561,709
# Chains of length 5 0 593,856
# Chains of length 6 0 533,260
# Chains of length 7 0 488,775
# Chains of length 8 0 362,480
# Chains of length 9 0 163,219

# Chains of length 10 0 79,074
# Chains of length 11 0 25,944
# Chains of length 12 0 6,757

# Chains of length >12 0 675
Table 1: Evaluation of the chain length with Correspon-
dence Chaining (CC) for the lion dataset with 27 im-
ages. The chains of length two are kept out.

the flank of the lions head, which is visible in a wide
set of images. The majority of chains is based on five to
seven images, whereas only a few 3D points rely only
on three images. These last mentioned points are all
close to a brink, whereas occlusions limit the number
of cameras, which see these points. Chains, which are
based on only two images, are kept out, because they
tend to be unreliable. The chains of a given length for
the civetta dataset and the temple dataset (see Figure
6) are distributed in a similar manner as for the lion
dataset. The temple dataset has by trend longer chains,
since it has almost the double number of input images
compared to both other datasets.

Without applying the proposed Correspondence Chain-
ing is each 3D point based on only two images, re-
sulting in chains, which have exclusively a length of
two. The lion dataset containes therefore without Cor-
respondence Chaining 15,989,224 points in the point-
cloud (see Table 2). With the proposed algorithm of
Correspondence Chaining the number of points was re-
duced by 79% to 3,406,074 points, reducing directly the
storage consumption. The pointcloud without Corre-
spondence Chaining needed 1,163 MB, while the new
method needs 322 MB, which is a reduction of 72%.
The application of Correspondence Chaining requires
additional processing time (see Table 3) for the chain-
ing, an increase of 120% from originally 1m 14s to 2m
43s is obtained to set up all matches for triangulation.
However, this calculation time is saved during the trian-
gulation step, because due to Correspondence Chaining
much less points must be triangulated: The execution
time for triangulation is reduced by 67% from 8m 10s
to 2m 43s. In total, the execution time for Correspon-
dence Chaining and triangulation is reduced by 42%,
while running these experiments for the lion dataset on
an Intel Xeon W3565 with 4 cores and 3.2GHz. In
summary the new method of Correspondence Chain-
ing produces fewer 3D points by reducing redundan-

lion dataset
Without CC CC + eRTC Deviation

3D Points 15,989,224 3,406,074 - 79%
Filesize 1,163 MB 322 MB -72%

civetta dataset
Without CC CC + eRTC Deviation

3D Points 17,782,646 3,309,250 - 81%
Filesize 1,361 MB 295 MB -78%

temple dataset
Without CC CC + eRTC Deviation

3D Points 2,106,557 394,884 - 81%
Filesize 72.7 MB 32.9 MB -55%

Table 2: Evaluation of number of points and file size
for all datasets with Correspondence Chaining (CC).

lion dataset
Without CC With CC Deviation

Chaining 1m 14s 2m 43s +120%
Triangulation 8m 10s 2m 43s -67%

Both 9m 24s 5m 26s -42%
Table 3: Evaluation of the execution time of Correspon-
dence Chaining (CC) for the lion dataset.

cies of the 3D reconstruction. It outperforms the initial
method in terms of higher storage efficiency and faster
execution time. In Figure 7 (c) the resulting point-
cloud of the lion dataset with Correspondence Chain-
ing is depicted. Nearly all imprecisely reconstructed
points are removed in this 3D model, as indicated by
the groundtruth comparison in Figures 7(b) and 7(d).

Overall a reduction of 3D points by 79% was per-
formed, while the surface is still dense in most parts
of the dataset. Small holes within the surface (Fig-
ures 7(c)), indicating missing 3D data, are exclusively
limited to the dark parts of the input images, which
are mainly reasoned by the locally concave character
of the object: This does not allow for good illumina-
tion and simultaneously excludes the generation of long
chains since those areas are only visible for a few cam-
eras. Finally is the dense estimation not very reliable,
since the image areas do not contain a characteristic
texture for a unique matching. Therefore many pix-
els in this region are filtered when applying the validity
check. Since the Correspondence Chaining approach
leaves out chains of length two, especially points in
dark areas are affected by this regulation. In Figure 8c
and 9c the resulting pointclouds of the civetta dataset
and the temple dataset with Correspondence Chaining
are depicted. They show similar properties as the lion
dataset. Wrongly reconstructed 3D points are removed
especially around the head of the civetta and between
the pillars of the temple.

3D reconstruction quality: In Figures 7(a) and 7c
show the resulting pointclouds of the lion dataset with
and without the proposed Correspondence Chaining ap-
proach, indicating the enhanced reconstruction quality.
Without Correspondence Chaining a lot of 3D points
are imprecisely reconstructed, but with Correspondence



lion dataset
Without CC With CC Deviation

Mean Error 0.7018 mm 0.5288 mm -25%
RMS Error 1.1752 mm 0.7461 mm -37%

civetta dataset
Without CC With CC Deviation

Mean Error 2.5620 mm 1.5470 mm -40%
RMS Error 4.8428 mm 2.1512 mm -56%

Table 4: Comparison of the reconstructed pointclouds
of the lion/civetta dataset against the ground truth re-
constructions of the Orcam [Köh13] and the laser scan-
ner [Nex] respectively.

Chaining nearly all 3D points are located on the objects
surface. Especially at the edges of the lion without Cor-
respondence Chaining a lot of 3D points are wrongly
reconstructed in front of the surface leading to the un-
sharp edges. With Correspondence Chaining nearly no
flying 3D points are visible and the edges are sharp.
This comparison can be found in Figure 8 and 9 for
the civetta dataset and the temple dataset. Again both
datasets show similar properties like the lion dataset.
Thus, from a visual point of view the pointcloud with
Correspondence Chaining is much more precisely re-
constructed. To verify this enhanced precision a com-
parison against ground truth data is performed. For
the comparison of the pointclouds against the ground
truth data the one-sided Hausdorff Distance [Ruc96]
was used, which is defined as

sup
x∈X

inf
y∈Y

d(x,y). (2)

X represents the reference model (generated point-
cloud), Y the target model (ground truth), while d(x,y)
holding the distance between 3D points x and y. The
one-sided Hausdorff distance finds for each 3D point in
the generated pointcloud the closest point in the ground
truth model. Since image based 3D reconstructions
are in general only up to scale, an absolute distance
measure cannot be directly estimated. However,
the size of the reconstruction can be mapped to a
meter-scale by measuring corresponding distances in
the reconstruction and on the real object.
In Table 4 the resulting pointclouds of the lion dataset
and the civetta dataset with and without Correspon-
dence Chaining are compared against ground truth
data. The ground truth data for the lion dataset is
generated by the Orcam [Köh13], which is a very
accurate 3D reconstruction tool with sub-millimeter
precision, while the ground truth data for the civetta
dataset is generated by a laser scanner (NextEngine
3D Scanner HD [Nex]). The bounding box diagonal
of the Lion is around 40cm and of the Civetta 50cm.
In Figure 7(b) and Figure 8(b) the pointclouds without
Correspondence Chaining of the lion dataset and the
civetta dataset respectively are compared against the
groundtruth data. Note the different scales of the

two Figures. All wrongly reconstructed 3D points in
front of the surface are coloured red, while correct
reconstructions are shown in green. The mean error
for the lion dataset sums up to ∼0.7mm, while for the
civetta dataset a mean error of ∼2.6mm is acived. For
the lion dataset we measured a root mean square error
of ∼ 1.2mm and for the civetta dataset of ∼ 4.8mm.
In Figure 7(d) and Figure 8(d) the pointclouds with
Correspondence Chaining of the lion dataset and the
civetta dataset respectively are compared against the
groundtruth data. Much less 3D points are colored red
in these Figures, i.e. 3D points with a big distance to
the ground truth reconstruction are removed. The main
part of the surface is colored green and fits thus to the
ground truth. Only a few 3D points, which are located
in holes or depressions, are colored red, because they
can not be reconstructed precisely. The mean error
of the lion dataset is reduced with Correspondence
Chaining to ∼ 0.5mm, which is a reduction of 25%,
while the root mean square error is reduced by 37%
to ∼ 0.7mm. The mean error of the civetta dataset is
even reduced by 40% and the root mean square error
by 56%. This high reduction of both root mean square
errors is an indicate that especially the points with big
distance to the ground truth are reconstructed with
Correspondence Chaining more precisely.
The temple dataset is taken from the middlebury
datasets (TempleRing) [Sei06] and ground truth data
for a self-made evaluation is not publicly available.
However, from a visual point of view the precision was
enhanced in a similar manner as in both other datasets.
Summarized, Correspondence Chaining reduces the
redundancy of the reconstructed 3D model and the
reconstructed 3D model is in average much more
precise. Especially the 3D points with huge distances
to the ground truth models are removed. In a next step
meshes are created from the reconstructed pointclouds
to verify that details are still preserved in the 3D recon-
struction. Details in this context are fine structures in
the surface of the object that is reconstructed.
In Figure 9 the meshes of the reconstructed pointclouds
of the temple dataset without (9b) and with (9d) Cor-
respondence Chaining are depicted. The meshes were
created in an external tool, called MeshLab [Cig08],
by using Poisson meshing (for more details [Kaz06]).
Without Correspondence Chaining the surface is very
rough. The stairs are almost flat, the pillars have a
rough surface and the roof contains nearly no details.
This is due to many imprecisely reconstructed pixels
in the pointcloud, which are flying in front of the
surface and which are considered by Poisson meshing
since this approach is very outlier sensitive. With
Correspondence Chaining (see Figure 9d) the surface
is much smoother. This is due to the removed flying
pixels, but the details are preserved in the mesh. The



stairs are clearly visible, the pillars contain also fine
structures and the roof is full of details. We also
created meshes for the lion dataset and the civetta
dataset, but because of the high number of points in the
pointcloud without Correspondence Chaining, around
48GB main memories were needed for meshing. With
Correspondence Chaining around 10GB main memory
were needed for this two datasets only. The results
were similar to the temple dataset.

5 CONCLUSION
The introduced Correspondence Chaining approach
extends existing two-view reconstruction algorithms
to allow for multi-view reconstruction by chaining
pairwise correspondences between images to long
chains of correspondences. The correctness of the
correspondences is validated using the extended Round
Trip Check (eRTC), which was introduced in this work.
The triangulation of long chains of correspondences is
based on a wide angle and exploiting information from
multiple images leading to an increased reliability of
the 3D points. These claims have been evaluated on
three datasets: the lion dataset, the civetta dataset and
the temple dataset, where the applied Correspondence
Chaining produced a nearly outlier free and precise 3D
reconstruction. In comparison to the dense two-view
reconstruction, the implemented algorithm delivers a
dense multi-view reconstruction with improved preci-
sion and reduced redundancies; the enhanced results
are achieved with less storage consumption and faster
computation time. In the comparison with ground truth
data the mean error of the reconstructed pointclouds
was reduced up to a factor of 40%, whereas the root
mean square error was reduced by up to 56%, indi-
cating that especially 3D points with originally large
deviations from the ground truth data are reconstructed
more precisely with Correspondence Chaining. When
applying the Correspondence Chaining algorithm,
the computation time of the involved parts within
reconstruction process (Correspondence Chaining and
triangulation) was reduced by up to 42%, while file
size of the reconstructed 3D models was decreased by
up to 78%. The proposed Correspondence Chaining
algorithm is applicable with every kind of dense esti-
mation algorithm between image-pairs and is a starting
point for further processing steps of the datasets, which
rely on consistent and precisely reconstructed models.
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Figure 7: Reconstruction results for the lion dataset (27 images) accompanied by color-encoded comparisons to
the corresponding groundtruth: Without (a,b) and with (c,d) the proposed Correspondence Chaining algorithm.

(a) (b) (c) (d)

Figure 8: Reconstruction results for the civetta dataset (28 images) accompanied by color-encoded comparisons
to the corresponding groundtruth: Without (a,b) and with (c,d) the proposed Correspondence Chaining algorithm.
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Figure 9: Reconstruction results for the temple dataset (47 images) accompanied by visualizations of polygon
meshes created on the basis of the pointclouds: Without (a,b) and with (c,d) the proposed Correspondence Chaining
algorithm.


